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Linear regression cheatsheet
Gavin Band, WHG GMS Programme 2021

Linear regression models an outcome variable (𝑌) in terms of one or more predictor 
variables (𝑋).  The model asserts that 𝑌 is a linear combination of columns of 𝑋 plus some 
noise.  The noise is assumed to be Gaussian with some variance 𝜎!. The residual variance is 
assume to be the same for all data points).

𝑌 = 𝜇 + 𝑋𝛽 + 𝜖

𝜖~𝑁(0, 𝜎!)
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“intercept”
(𝜇) 

“residual” error for 
this data point

Regression “slope” ( #𝛽)

Matrix multiplication of the d-dimensional  row vector of predictors X
and the d-dimensional column vector of of parameters 𝛽

The likelihood function. The regression likelihood composes the above into a single 
formula – the likelihood of 𝑌 given 𝑋 and the parameters.  (It is simplest to write this if we 
instead imagine 𝜇 to be the first entry of 𝛽 .  This works out if we add a single 1 as the 
first entry of 𝑋:

For a single sample: Squared residual (distance) 
from regression line

𝑌 = 𝜇 + 𝑋#𝛽# + 𝑋!𝛽! +⋯𝑋)𝛽) + 𝜖

Interpretation: +𝛽 is the 
estimated increase in Y 

associated with a unit increase 
in X.  (The hat has been added to 

indicate this is an estimate.)

Or using matrix notation:

𝜖~𝑁(0, 𝜎!)

The outcome values are assumed independent of each other (probabilities 
multiply).  So for multiple samples the likelihood is:
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“sum of squared 
errors”

For multiple samples:
(𝑛 = 1,… , 𝑁) The exponent is negative.  Maximising the likelihood 

is therefore the same as minimizing the sum of 
squared errors – it finds the ‘best-fitting line’.

Basic linear regression (maximum likelihood) in R:

> fit = lm( Y ~ X, data = D )

> coefficients(fit)
(Intercept)            X 

0.0007606242 0.3135072376 

> logLik(fit)
'log Lik.' -132.981 (df=3)

> residuals(fit)
1          2          3          4 

-0.6115976 -0.3239313  0.7034511 -0.2934937 . . .

> summary(fit)$coefficients
Estimate Std. Error     t value     Pr(>|t|)

(Intercept) 0.0007606242 0.09412669 0.008080856 0.9935689071
X           0.3135072376 0.08512788 3.682780013 0.0003778035

> library( bmrs )

> fit = brm(
Y ~ X,
data = data,
prior = set_prior( “normal(0,1)” )

)

> fit$fit
Inference for Stan model: ca2436c230608c2ca38ebc402110120d.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5% 25%    50% 75% 97.5% n_eff Rhat
b_Intercept 0.25 0.00 0.05 0.16 0.22 0.25 0.28 0.34 3549 1
b_X -0.05 0.00 0.04 -0.13 -0.08 -0.05 -0.02 0.03 4293 1
sigma 0.45 0.00 0.03 0.39 0.42 0.44 0.47 0.51 3729 1
lp__ -65.24 0.03 1.25 -68.44 -65.82 -64.91 -64.32 -63.81 1972 1

Samples were drawn using NUTS(diag_e) at Thu Nov 11 17:56:07 2021.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

But what if you want to fit with prior information included?  Use brms package:

se 8𝛽+ = 𝜎! 𝑋,𝑋 ++
"#

This turns out to have an analytic solution:

+𝛽 = 𝑋"𝑋 #$𝑋"𝑌

variance +𝛽 = 𝜎! 𝑋"𝑋 #$

Maximum likelihood estimate (MLE)

Variance of MLE

Standard error  of MLE

https://www.well.ox.ac.uk/study/gms

