Linear regression cheatsheet

Gavin Band, WHG GMS Programme 2021

Linear regression models an outcome variable (Y) in terms of one or more predictor variables (X). The model asserts that Y is a linear combination of columns of X plus some noise. The noise is assumed to be Gaussian with some variance σ^2 . The residual variance is assume to be the same for all data points).

$$Y = \mu + X_1\beta_1 + X_2\beta_2 + \cdots + X_d\beta_d + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$$

Or using matrix notation:

 $Y = \mu + X\beta + \epsilon \qquad \epsilon \sim N(0, \sigma^2)$

Matrix multiplication of the *d*-dimensional *row* vector of predictors X and the d-dimensional *column vector* of of parameters β

The likelihood function. The regression likelihood composes the above into a single formula – the likelihood of *Y* given *X* and the parameters. (It is simplest to write this if we instead imagine μ to be the first entry of β . This works out if we add a single 1 as the first entry of *X*:

For a single sample:
$$P(Y|X,\beta) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2} \cdot \frac{(Y-X\beta)^2}{\sigma^2}} \bigvee_{\text{from regression line}}$$

The outcome values are assumed independent of each other (probabilities multiply). So for multiple samples the likelihood is:

For multiple samples:
$$P(Y|X,\beta) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2} \cdot \frac{\sum_n (Y_n - X_n\beta)^2}{\sigma^2}}$$
 The exponent is negative. Maximising the likelihood is therefore the same as minimizing the sum of squared errors – it finds the 'best-fitting line'.

~

Basic linear regression (maximum likelihood) in R:

```
> fit = lm(Y \sim X, data = D)
> coefficients(fit)
 (Intercept)
                        Х
0.0007606242 0.3135072376
> logLik(fit)
'log Lik.' -132.981 (df=3)
> residuals(fit)
                    2
         1
                               3
                                           4
-0.6115976 -0.3239313 0.7034511 -0.2934937 . . .
> summary(fit)$coefficients
                                                     Pr(>|t|)
                Estimate Std. Error
                                        t value
(Intercept) 0.0007606242 0.09412669 0.008080856 0.9935689071
Х
            0.3135072376 0.08512788 3.682780013 0.0003778035
```

This turns out to have an analytic solution:

$$\hat{\beta} = (X^{t}X)^{-1}X^{t}Y \xleftarrow{} \text{Maximum likelihood estimate (MLE)}$$

$$\text{variance}(\hat{\beta}) = \sigma^{2}(X^{t}X)^{-1} \xleftarrow{} \text{Variance of MLE}$$

$$\text{se}(\widehat{\beta}_{j}) = \sqrt{\sigma^{2}(X^{t}X)_{jj}^{-1}} \xleftarrow{} \text{Standard error of MLE}$$

But what if you want to fit with prior information included? Use **brms** package:

```
> library( bmrs )
> fit = brm(
    Y ~ X,
    data = data,
    prior = set_prior( "normal(0,1)" )
)
```

> fit\$fit

Inference for Stan model: ca2436c230608c2ca38ebc402110120d.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
0.25	0.00	0.05	0.16	0.22	0.25	0.28	0.34	3549	1
-0.05	0.00	0.04	-0.13	-0.08	-0.05	-0.02	0.03	4293	1
0.45	0.00	0.03	0.39	0.42	0.44	0.47	0.51	3729	1
-65.24	0.03	1.25	-68.44	-65.82	-64.91	-64.32	-63.81	1972	1
	mean 0.25 -0.05 0.45 -65.24	<pre>mean se_mean 0.25 0.00 -0.05 0.00 0.45 0.00 -65.24 0.03</pre>	<pre>mean se_mean sd 0.25 0.00 0.05 -0.05 0.00 0.04 0.45 0.00 0.03 -65.24 0.03 1.25</pre>	mean se_mean sd 2.5% 0.25 0.00 0.05 0.16 -0.05 0.00 0.04 -0.13 0.45 0.00 0.03 0.39 -65.24 0.03 1.25 -68.44	mean se_mean sd 2.5% 25% 0.25 0.00 0.05 0.16 0.22 -0.05 0.00 0.04 -0.13 -0.08 0.45 0.00 0.03 0.39 0.42 -65.24 0.03 1.25 -68.44 -65.82	mean se_mean sd 2.5% 25% 50% 0.25 0.00 0.05 0.16 0.22 0.25 -0.05 0.00 0.04 -0.13 -0.08 -0.05 0.45 0.00 0.03 0.39 0.42 0.44 -65.24 0.03 1.25 -68.44 -65.82 -64.91	mean se_mean sd 2.5% 25% 50% 75% 0.25 0.00 0.05 0.16 0.22 0.25 0.28 -0.05 0.00 0.04 -0.13 -0.08 -0.05 -0.02 0.45 0.00 0.03 0.39 0.42 0.44 0.47 -65.24 0.03 1.25 -68.44 -65.82 -64.91 -64.32	mean se_mean sd 2.5% 25% 50% 75% 97.5% 0.25 0.00 0.05 0.16 0.22 0.25 0.28 0.34 -0.05 0.00 0.04 -0.13 -0.08 -0.05 -0.02 0.03 0.45 0.00 0.03 0.39 0.42 0.44 0.47 0.51 -65.24 0.03 1.25 -68.44 -65.82 -64.91 -64.32 -63.81	mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff 0.25 0.00 0.05 0.16 0.22 0.25 0.28 0.34 3549 -0.05 0.00 0.04 -0.13 -0.08 -0.05 -0.02 0.03 4293 0.45 0.00 0.03 0.39 0.42 0.44 0.47 0.51 3729 -65.24 0.03 1.25 -68.44 -65.82 -64.91 -64.32 -63.81 1972

Samples were drawn using NUTS(diag_e) at Thu Nov 11 17:56:07 2021. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).